Frobenius–Schur indicators for semisimple Lie algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Semisimple Subalgebras of Semisimple Lie Algebras

The goal of Section 2 is to provide a proof of Theorem 2.0.1. Section 3 introduces the necessary facts about Lie algebras and representation theory, with the goal being the proof of Proposition 3.5.7 (ultimately as an application of Theorem 2.0.1), and Proposition 3.3.1. In Section 4 we prove the main theorem, using Propositions 3.3.1 and 3.5.7. In Section 5, we apply the theorem to the special...

متن کامل

Representations of Semisimple Lie Algebras

Let L be a finite-dimensional, semisimple Lie algebra over an algebraically closed field k of characteristic 0. Let H be a fixed Cartan subalgebra of L, and Φ be the root system. Fix a base ∆ = {α1, · · · , αl} of Φ. Let Λ denote the set of dominant, integral linear functions on H. Theorem 0.1. There is a one-to-one correspondence Λ ∼ −→ {isomorphism classes of finite-dimensional irreducible L-...

متن کامل

Classification of semisimple Lie algebras

Furthermore h was diagonalisable in every irreducible representation and H := Span(h) is obviously an abelian subalgebra. Note that h = h + 0 is the abstract Jordan decomposition of h, that H = CL(H) is the weight space of H , acting on L with the adjoint action, corresponding to the weight 0 ∈ H . Likewise, Span(e) is the weight space for the weight c · h 7→ −2c for c ∈ C, and Span( f ) is the...

متن کامل

Representations of Semisimple Lie Algebras

This paper studies the representations of semisimple Lie algebras, with care given to the case of sln(C). We develop and utilize various tools, including the adjoint representation, the Killing form, root space decomposition, and the Weyl group to classify the irreducible representations of semisimple Lie algebras.

متن کامل

Realizations of real semisimple low-dimensional Lie algebras Realizations of real semisimple low-dimensional Lie algebras

A complete set of inequivalent realizations of threeand four-dimensional real unsolvable Lie algebras in vector fields on a space of an arbitrary (finite) number of variables is obtained. Representations of Lie algebras by vector fields are widely applicable e.g. in integrating of ordinary differential equations, group classification of partial differential equations, the theory of differential...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2007

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2007.06.003